FINITE s-ARC TRANSITIVE GRAPHS OF PRIME-POWER ORDER
نویسنده
چکیده
An s-arc in a graph is a vertex sequence (α0, α1, . . . , αs) such that {αi−1, αi} ∈ EΓ for 1 6 i 6 s and αi−1 6= αi+1 for 1 6 i 6 s− 1. This paper gives a characterization of a class of s-transitive graphs; that is, graphs for which the automorphism group is transitive on s-arcs but not on (s+ 1)-arcs. It is proved that if Γ is a finite connected s-transitive graph (where s > 2) of order a p-power with p prime, then s = 2 or 3; further, either s = 3 and Γ is a normal cover of the complete bipartite graph K2m,2m , or s = 2 and Γ is a normal cover of one of the following 2-transitive graphs: Kpm+1 (the complete graph of order p m+1), K2m,2m − 2K2 (the complete bipartite graph of order 2m+1 minus a 1-factor), a primitive affine graph, or a biprimitive affine graph. (Finite primitive and biprimitive affine 2-arc transitive graphs were classified by Ivanov and Praeger in 1993.)
منابع مشابه
Two-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملFINITE s-ARC TRANSITIVE CAYLEY GRAPHS AND FLAG-TRANSITIVE PROJECTIVE PLANES
In this paper, a characterisation is given of finite s-arc transitive Cayley graphs with s ≥ 2. In particular, it is shown that, for any given integer k with k ≥ 3 and k 6= 7, there exists a finite set (maybe empty) of s-transitive Cayley graphs with s ∈ {3, 4, 5, 7} such that all s-transitive Cayley graphs of valency k are their normal covers. This indicates that s-arc transitive Cayley graphs...
متن کاملUnitary Graphs
Unitary graphs are arc-transitive graphs with vertices the flags of Hermitian unitals and edges defined by certain elements of the underlying finite fields. They played a significant role in a recent classification of a class of arc-transitive graphs that admit an automorphism group acting imprimitively on the vertices. In this article, we prove that all unitary graphs are connected of diameter...
متن کاملConstructing even radius tightly attached half-arc-transitive graphs of valency four
A finite graph X is half-arc-transitive if its automorphism group is transitive on vertices and edges, but not on arcs. When X is tetravalent, the automorphism group induces an orientation on the edges and a cycle of X is called an alternating cycle if its consecutive edges in the cycle have opposite orientations. All alternating cycles of X have the same length and half of this length is calle...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کامل